organic compounds

6765 measured reflections

 $R_{\rm int} = 0.040$

3581 independent reflections

3104 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-Chlorophenyl)-3,4,5-trimethoxybenzamide

Aamer Saeed,^a* Rasheed Ahmad Khera,^a Mahira Batool,^a Uzma Shaheen^a and Ulrich Flörke^b

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and ^bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 12 July 2008; accepted 23 July 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.107; data-to-parameter ratio = 17.7.

In the title compound, $C_{16}H_{16}CINO_4$, the dihedral angle between the two aromatic rings is 67.33 (8)°. The crystal packing shows strong intermolecular N-H···O hydrogen bonds that link the molecules to form chains along [101].

Related literature

For related literature, see: Capdeville et al. (2002); Ho et al. (2002); Igawa et al. (1999); Jackson et al. (1994); Makino et al. (2003); Zhichkin et al. (2007).

Experimental

Crystal data

C₁₆H₁₆ClNO₄ $M_r = 321.75$ Monoclinic, Cc a = 9.487 (2) Å b = 25.666 (6) Å c = 6.9781 (15) Å $\beta = 112.340 \ (5)^{\circ}$

V = 1571.5 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 120 (2) K $0.41 \times 0.10 \times 0.10 \text{ mm}$

Data collection

```
Bruker SMART APEX
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2004)
  T_{\rm min} = 0.901, T_{\rm max} = 0.975
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.106$	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.02	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
3581 reflections	Absolute structure: Flack (1983)
202 parameters	with 1780 Friedel pairs
2 restraints	Flack parameter: 0.06 (6)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.88	2.18	2.878 (3)	136
	. 1 . 3	. 1		

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

AS gratefully acknowledges a research grant from Quaid-I-Azam University, Islamabad.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2747).

References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Capdeville, R., Buchdunger, E. Zimmermann, J. & Matter, A. (2002). Nature Rev. Drug Discov. 1, 493-502.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501-1506.
- Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn. Patent Kokai Tokkyo Koho JP 11171848.
- Jackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220-3230.
- Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389-392
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhichkin, P., Kesicki, É., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.

supplementary materials

Acta Cryst. (2008). E64, 01625 [doi:10.1107/S1600536808023234]

N-(4-Chlorophenyl)-3,4,5-trimethoxybenzamide

A. Saeed, R. A. Khera, M. Batool, U. Shaheen and U. Flörke

Comment

The benzanilide core is present in compounds with a wide range of biological activities that it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino *et al.*, 2003), benzodiazepine-2,5-diones (Ho *et al.*, 20022), and 2,3-disubstituted 3*H*-quinazoline-4-ones (Zhichkin *et al.*, 2007). Benzanilides have established their efficacy as centroid elements of ligands that bind to a wide variety of receptor types. Thus benzanilides containing aminoalkyl groups originally designed as a peptidomimetic, have been incorporated in an Arg-Gly-Asp cyclic peptide yielding a high affinity GPIIb/IIIa ligand (Jackson *et al.*, 1994). Imatinib is an ATP-site binding kinase inhibitor and plate-let-derived growth factor receptor kinases (Capdeville *et al.*, 2002). Benzamides have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa *et al.*, 1999)

Geometric parameters of the title compound, $C_{16}H_{16}CINO_4$, are in the usual ranges. The dihedral angle between the two aromatic rings is 67.33 (8)° and the torsion angles N1—C1—C2—C3 and C1—N1—C11—C12 are -31.1 (3)° and -39.2 (4)°, respectively. Of the three methoxy groups two of them lie nearly in plane with the aromatic ring, the O(3) group is almost perpendicular with C9—O3—C5—C4 of 92.2 (3)°. The crystal packing shows strong intermolecular N—H···O bonds that link molecules to endless chains along [-101]. Details are given in Table 1.

Experimental

Trimethoxybenzoyl chloride (5.4 mmol) in CHCl₃ was treated with 4-chloroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl₃ and washed consecutively with aq 1 *M* HCl and saturated aq NaHCO₃. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl₃ afforded the title compound (84%) as white needles: IR (KBr) 3226, 1665, 1616, 1520, 1352 cm⁻¹; 1H NMR (CDCl₃, 400 MHz) δ 8.13 (d, J = 8 Hz, 1H), 7.81 (d, J = 8 Hz, 1H), 7.51 (dd, J = 8 Hz, 1H), 7.66 (dd, J = 8 Hz, 1H), 7.43 (d, J = 8 Hz, 2H), 7.36 (br s, 1H), 7.25 (d, J = 8 Hz, 1H), 3.89 (9H, s, OMex3). Anal. Calcd. For C₁₆H₁₆ClNO₄, C, 59.73; H, 5.01; 11.02; N, 4.35; found C, 59.69; H, 5.04; 11.02; N, 4.42

Refinement

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms with isotropic displacement parameters $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$ and 1.5U for methyl-C.

Figures

Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing viewed along [001] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

N-(4-Chlorophenyl)-3,4,5-trimethoxybenzamide

Crystal data	
C ₁₆ H ₁₆ ClNO ₄	$F_{000} = 672$
$M_r = 321.75$	$D_{\rm x} = 1.360 {\rm ~Mg~m}^{-3}$
Monoclinic, Cc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 879 reflections
a = 9.487 (2) Å	$\theta = 2.5 - 26.6^{\circ}$
<i>b</i> = 25.666 (6) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 6.9781 (15) Å	T = 120 (2) K
$\beta = 112.340 \ (5)^{\circ}$	Prism, colourless
V = 1571.5 (6) Å ³	$0.41\times0.10\times0.10~mm$
Z = 4	

Data collection

Bruker SMART APEX diffractometer	3581 independent reflections
Radiation source: sealed tube	3104 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.040$
T = 120(2) K	$\theta_{\text{max}} = 27.9^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -12 \rightarrow 12$
$T_{\min} = 0.901, T_{\max} = 0.975$	$k = -33 \rightarrow 29$
6765 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_0^2) + (0.0463P)^2 + 0.1374P]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.106$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
3581 reflections	$\Delta \rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$
202 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983), with 1780 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.06 (6)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.24506 (8)	0.52096 (2)	-0.45259 (9)	0.03098 (17)
01	0.0700 (2)	0.75731 (7)	-0.2052 (3)	0.0251 (4)
O2	0.3495 (2)	0.83040 (7)	0.6718 (3)	0.0293 (4)
O3	0.2739 (2)	0.92522 (7)	0.5093 (3)	0.0287 (4)
O4	0.1760 (2)	0.94204 (7)	0.1029 (3)	0.0293 (4)
N1	0.2656 (2)	0.71265 (7)	0.0305 (3)	0.0206 (4)
H1	0.3366	0.7136	0.1562	0.025*
C1	0.1742 (3)	0.75494 (10)	-0.0350 (4)	0.0201 (5)
C2	0.2087 (3)	0.79915 (9)	0.1153 (4)	0.0190 (5)
C3	0.2689 (3)	0.79115 (10)	0.3293 (4)	0.0207 (5)
H3A	0.2926	0.7570	0.3846	0.025*
C4	0.2938 (3)	0.83381 (10)	0.4601 (4)	0.0217 (5)
C5	0.2589 (3)	0.88383 (10)	0.3797 (4)	0.0217 (5)
C6	0.2015 (3)	0.89163 (10)	0.1650 (4)	0.0226 (6)
C7	0.1739 (3)	0.84890 (9)	0.0330 (4)	0.0209 (5)
H7A	0.1314	0.8538	-0.1129	0.025*
C8	0.4275 (4)	0.78426 (12)	0.7598 (5)	0.0380 (7)
H8A	0.3560	0.7549	0.7223	0.057*
H8B	0.4727	0.7878	0.9109	0.057*
H8C	0.5083	0.7779	0.7073	0.057*
С9	0.4195 (4)	0.94971 (13)	0.5730 (6)	0.0457 (8)
H9A	0.4986	0.9251	0.6541	0.069*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

0.4213	0.9803	0.6582	0.069*
0.4387	0.9606	0.4506	0.069*
0.1094 (4)	0.95144 (11)	-0.1151 (5)	0.0375 (7)
0.1764	0.9377	-0.1807	0.056*
0.0960	0.9890	-0.1405	0.056*
0.0100	0.9341	-0.1736	0.056*
0.2554 (3)	0.66682 (9)	-0.0888 (4)	0.0194 (5)
0.1169 (3)	0.64558 (10)	-0.2157 (4)	0.0238 (5)
0.0244	0.6618	-0.2258	0.029*
0.1133 (3)	0.60093 (10)	-0.3273 (4)	0.0269 (6)
0.0184	0.5868	-0.4158	0.032*
0.2479 (3)	0.57674 (10)	-0.3103 (4)	0.0218 (5)
0.3862 (3)	0.59685 (10)	-0.1809 (4)	0.0259 (6)
0.4784	0.5798	-0.1675	0.031*
0.3897 (3)	0.64200 (10)	-0.0706 (4)	0.0250 (6)
0.4847	0.6561	0.0182	0.030*
	0.4213 0.4387 0.1094 (4) 0.1764 0.0960 0.0100 0.2554 (3) 0.1169 (3) 0.0244 0.1133 (3) 0.0184 0.2479 (3) 0.3862 (3) 0.4784 0.3897 (3) 0.4847	$\begin{array}{cccccc} 0.4213 & 0.9803 \\ 0.4387 & 0.9606 \\ 0.1094 (4) & 0.95144 (11) \\ 0.1764 & 0.9377 \\ 0.0960 & 0.9890 \\ 0.0100 & 0.9341 \\ 0.2554 (3) & 0.66682 (9) \\ 0.1169 (3) & 0.64558 (10) \\ 0.0244 & 0.6618 \\ 0.1133 (3) & 0.60093 (10) \\ 0.0184 & 0.5868 \\ 0.2479 (3) & 0.57674 (10) \\ 0.3862 (3) & 0.59685 (10) \\ 0.4784 & 0.5798 \\ 0.3897 (3) & 0.64200 (10) \\ 0.4847 & 0.6561 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0333 (3)	0.0268 (3)	0.0286 (3)	0.0033 (3)	0.0071 (3)	-0.0101 (3)
01	0.0181 (9)	0.0240 (10)	0.0225 (9)	0.0011 (7)	-0.0043 (7)	-0.0031 (7)
O2	0.0373 (11)	0.0277 (10)	0.0193 (9)	0.0051 (8)	0.0066 (8)	0.0008 (8)
03	0.0346 (11)	0.0236 (9)	0.0262 (10)	-0.0009 (8)	0.0097 (8)	-0.0075 (8)
O4	0.0406 (12)	0.0171 (9)	0.0248 (10)	0.0013 (8)	0.0062 (9)	0.0014 (8)
N1	0.0170 (10)	0.0186 (10)	0.0186 (10)	0.0016 (8)	-0.0019 (8)	-0.0021 (9)
C1	0.0157 (11)	0.0203 (12)	0.0207 (13)	-0.0004 (9)	0.0026 (11)	-0.0003 (10)
C2	0.0154 (12)	0.0179 (12)	0.0214 (13)	-0.0006 (9)	0.0046 (10)	-0.0017 (10)
C3	0.0172 (11)	0.0188 (12)	0.0221 (13)	-0.0002 (9)	0.0027 (10)	0.0033 (10)
C4	0.0218 (13)	0.0241 (14)	0.0184 (13)	-0.0003 (10)	0.0068 (11)	-0.0015 (10)
C5	0.0218 (12)	0.0203 (13)	0.0230 (13)	-0.0009 (10)	0.0085 (11)	-0.0056 (10)
C6	0.0227 (13)	0.0181 (13)	0.0248 (14)	0.0016 (10)	0.0065 (11)	0.0010 (10)
C7	0.0192 (11)	0.0211 (13)	0.0187 (12)	0.0010 (9)	0.0029 (10)	0.0005 (10)
C8	0.052 (2)	0.0397 (17)	0.0211 (14)	0.0166 (15)	0.0126 (14)	0.0076 (13)
С9	0.0401 (18)	0.0386 (18)	0.050 (2)	-0.0104 (14)	0.0079 (16)	-0.0163 (15)
C10	0.058 (2)	0.0190 (14)	0.0282 (15)	0.0046 (13)	0.0084 (14)	0.0044 (12)
C11	0.0225 (12)	0.0159 (12)	0.0161 (11)	-0.0007 (9)	0.0031 (10)	0.0018 (9)
C12	0.0176 (12)	0.0218 (13)	0.0294 (14)	0.0030 (10)	0.0059 (11)	-0.0023 (11)
C13	0.0200 (13)	0.0283 (15)	0.0255 (14)	-0.0029 (10)	0.0011 (11)	-0.0080 (11)
C14	0.0286 (13)	0.0161 (12)	0.0209 (13)	0.0003 (10)	0.0095 (11)	-0.0039 (10)
C15	0.0208 (13)	0.0263 (14)	0.0285 (14)	0.0057 (10)	0.0069 (11)	0.0015 (11)
C16	0.0191 (13)	0.0233 (14)	0.0255 (14)	-0.0013 (10)	0.0005 (11)	-0.0014 (11)

Geometric parameters (Å, °)

Cl1—C14	1.737 (2)	C8—H8A	0.9800
O1—C1	1.225 (3)	С8—Н8В	0.9800
O2—C4	1.369 (3)	C8—H8C	0.9800
O2—C8	1.408 (3)	С9—Н9А	0.9800

O3—C5	1.367 (3)	С9—Н9В	0.9800
O3—C9	1.426 (4)	С9—Н9С	0.9800
O4—C6	1.357 (3)	C10—H10A	0.9800
O4—C10	1.429 (4)	C10—H10B	0.9800
N1—C1	1.356 (3)	C10—H10C	0.9800
N1—C11	1.423 (3)	C11—C16	1.386 (4)
N1—H1	0.8800	C11—C12	1.386 (4)
C1—C2	1.494 (3)	C12—C13	1.378 (4)
C2—C7	1.387 (3)	C12—H12A	0.9500
C2—C3	1.397 (4)	C13—C14	1.384 (4)
C3—C4	1.387 (3)	C13—H13A	0.9500
С3—НЗА	0.9500	C14—C15	1.380 (4)
C4—C5	1.390 (4)	C15—C16	1.385 (4)
C5—C6	1.400 (3)	C15—H15A	0.9500
C6—C7	1.392 (4)	C16—H16A	0.9500
С7—Н7А	0.9500		
C4—O2—C8	116.6 (2)	H8B—C8—H8C	109.5
С5—О3—С9	113.2 (2)	О3—С9—Н9А	109.5
C6—O4—C10	117.0 (2)	O3—C9—H9B	109.5
C1—N1—C11	124.9 (2)	Н9А—С9—Н9В	109.5
C1—N1—H1	117.5	О3—С9—Н9С	109.5
C11—N1—H1	117.5	Н9А—С9—Н9С	109.5
O1—C1—N1	123.0 (2)	Н9В—С9—Н9С	109.5
O1—C1—C2	121.6 (2)	O4C10H10A	109.5
N1—C1—C2	115.5 (2)	O4—C10—H10B	109.5
C7—C2—C3	120.9 (2)	H10A-C10-H10B	109.5
C7—C2—C1	117.0 (2)	O4C10H10C	109.5
C3—C2—C1	122.0 (2)	H10A-C10-H10C	109.5
C4—C3—C2	119.1 (2)	H10B-C10-H10C	109.5
С4—С3—НЗА	120.5	C16—C11—C12	119.5 (2)
С2—С3—НЗА	120.5	C16—C11—N1	118.1 (2)
O2—C4—C3	124.0 (2)	C12—C11—N1	122.4 (2)
O2—C4—C5	115.4 (2)	C13—C12—C11	120.1 (2)
C3—C4—C5	120.6 (2)	C13—C12—H12A	119.9
O3—C5—C4	120.1 (2)	C11—C12—H12A	119.9
O3—C5—C6	119.8 (2)	C12—C13—C14	120.0 (2)
C4—C5—C6	120.0 (2)	С12—С13—Н13А	120.0
O4—C6—C7	125.0 (2)	С14—С13—Н13А	120.0
O4—C6—C5	115.3 (2)	C15—C14—C13	120.3 (2)
C7—C6—C5	119.6 (2)	C15—C14—Cl1	119.1 (2)
C2—C7—C6	119.7 (2)	C13—C14—Cl1	120.5 (2)
С2—С7—Н7А	120.1	C14—C15—C16	119.5 (2)
С6—С7—Н7А	120.1	С14—С15—Н15А	120.2
O2—C8—H8A	109.5	C16—C15—H15A	120.2
O2—C8—H8B	109.5	C15—C16—C11	120.5 (2)
H8A—C8—H8B	109.5	C15—C16—H16A	119.8
O2—C8—H8C	109.5	C11—C16—H16A	119.8
H8A—C8—H8C	109.5		

supplementary materials

C11 N1 C1 O1	1.5 (4)	02 05 04 04	5 1 (2)
CII = NI = CI = OI	1.5 (4)	03-03-04	5.1 (3)
C11—N1—C1—C2	-178.5(2)	C4—C5—C6—O4	-177.9 (2)
O1—C1—C2—C7	-29.2 (3)	O3—C5—C6—C7	-174.4 (2)
N1-C1-C2-C7	150.8 (2)	C4—C5—C6—C7	2.6 (4)
O1—C1—C2—C3	148.9 (2)	C3—C2—C7—C6	1.1 (4)
N1—C1—C2—C3	-31.1 (3)	C1—C2—C7—C6	179.2 (2)
C7—C2—C3—C4	0.0 (4)	O4—C6—C7—C2	178.2 (2)
C1—C2—C3—C4	-178.0 (2)	C5—C6—C7—C2	-2.4 (4)
C8—O2—C4—C3	19.9 (4)	C1-N1-C11-C16	143.0 (3)
C8—O2—C4—C5	-161.6 (3)	C1—N1—C11—C12	-39.2 (4)
C2—C3—C4—O2	178.7 (2)	C16-C11-C12-C13	-1.8 (4)
C2—C3—C4—C5	0.2 (4)	N1-C11-C12-C13	-179.6 (2)
C9—O3—C5—C4	92.2 (3)	C11-C12-C13-C14	1.0 (4)
C9—O3—C5—C6	-90.8 (3)	C12-C13-C14-C15	0.5 (4)
O2—C4—C5—O3	-3.1 (3)	C12-C13-C14-Cl1	-179.1 (2)
C3—C4—C5—O3	175.5 (2)	C13-C14-C15-C16	-1.1 (4)
O2—C4—C5—C6	179.8 (2)	Cl1—C14—C15—C16	178.5 (2)
C3—C4—C5—C6	-1.6 (4)	C14-C15-C16-C11	0.3 (4)
C10—O4—C6—C7	2.9 (4)	C12-C11-C16-C15	1.2 (4)
C10—O4—C6—C5	-176.6 (3)	N1-C11-C16-C15	179.1 (2)
<i>Hydrogen-bond geometry</i> (A, \circ)			

 D—H···A
 D—H
 H···A
 D···A
 D—H···A

 N1—H1···O1ⁱ
 0.88
 2.18
 2.878 (3)
 136

Symmetry codes: (i) x+1/2, -y+3/2, z+1/2.

Fig. 1

Fig. 2

